
Acta C?y8t. (1963). 6, 686 

The Fourier Transform of a Coiled-Coil 
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The Fourier transforms are given for a continuous ooiled-coil, and for a set of atoms spaced s% 
regular intervals along a coiled-coil. The nature of the solution is briefly discussed. 

Introduction 
It has recently been suggested simultaneously by 
Pauling & Corey (1963) and by Crick (1952) that the 
structure of a-keratin may be based on a coiled-coil, 
i.e. on a helix with a small repeat whose axis has been 
slightly deformed so that it follows a larger more 
gradual helix. The small helix proposed is the a-helix 
of Pauling, Corey & Branson (1951). 

It is therefore of interest to calculate the Fourier 
transform (or continuous structure factor) of structures 
of this sort. Those considered here are the continuous 
coiled-coil and the discontinuous coiled-coil. The for- 
mer is an infinitely thin ‘wire’ of electron density, 
and the latter is a set of scattering points (atoms) 
placed at regular intervals on a coiled-coil locus. It 
will be shown that the two results are very closely 
related. 

To obtain the structure factors for a structure of 
this type made up of real atoms, one follows a similar 
procedure to that described by Co&an, Crick & 
Vand (1952) in calculating the transform of the simple 
u-helix, i.e. one considers the atoms as being in sets, 
each set consisting of one atom from each residue. 
Thus all the nitrogen atoms of the polypeptide back- 
bone will be in one set, all the oxygen atoms of the 
backbone in another, and so on. One then uses the 
formula derived in this paper to calculate the con- 
tribution of each set separately, allowance being made 
for the finite size of the atom by multiplying the result 
for a set of points by the appropriate atomic scattering 
factor in the usua1 way. The results are then added 
together, with proper allowance for phase, to give the 
structure factor for the complete structure. 

The advantage of a general solution of the type given 
here is that instead of calculating the contribution 
of each atom separately one can group them into sets, 
in this case with a large number in each, and calculate 
the whole contribution of a set at one go. 

We shall call the small helix the minor helix and the 
larger helix followed by its axis the major helix. 

Mathematical method 
A genera1 description is given f&t, and the particular 
cage of the coiled-coil is then derived afterwards. 

Consider first the problem of a continuous infinitely 
thin ‘wire’ of electron density. Let us suppose that it is 
defined parametrically in terms of a parameter, t, 
which may be proportional to the length along the wire, 
though this is not essential. We also assume that the 
structure repeats exactly after a distance c in the 
z direction. 

We can form the expression for the value of the 
Fourier transform of such a wire at some particular 
point in reciprocal space. We will call this C(R, y, Z), 
where R, w and 2 are the cylindrica1 co-ordinates of 
the point in reciprocal space under consideration. 

Now it will often happen that the expression for the 
transform at this point will be an integral of the form 

where te is the value of t after which the structure 
repeats, and ji(t), j*(t) and js(t) are simple functions 
of t. They may also be functions of R, y and 2, but 
for the moment we are considering these as fixed. 
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We’can evalnate this integral by Fourier methods. 
To do this we consider the Fourier transform of these 
functions, considered as functions of t, i.e. we define 

P(T) a f 
s 
@j(t) exp (2titT)dt , (1) 

0 0 
where T is the co-ordinate in reciprocal parametric 
space. If j(t) repeats itself exactly m times in the 
interval & then we need only consider T at integer 
multiples of m/t,. 

We can now obtain the integral we require by the 
repeated use of Parseval’s theorem. 

The pth component of the transform of the product 
ji(t).je(t)-itk value at pTo-is given by 

a=WTo)G(-n..To), n 
where To - l/to and the sum is taken over all integer 
values of 12. 

We also have the relation 

s fqfiW~W = to 2 E;W’o)Ea(--nTo) - 
0 R 

By repeated application of these results we arrive at 

This can be written in the alternative more symmetri- 
cal form 

subject to the restriction that we only consider terms 
for which 

p+q+e = 0. 

If we now use the fact that ji(t) repeats m, times in 
to, je(t) m, times, etc. we obtain 

WC y, 2) 

with the restriction 

mfp+maQ+mg = 0. (3) 
The summations go over all integer vaiues of p, q 
and s, both positive and negative, satisfied by equa- 
tion (3). 

If instead of a continuous wire we have a set of 
points located at regular intervals along the path of 
the wire, one point being at t = 0, we obtain, instead 
of an integral, a sum of the form 

We have assumed that each point occurs after an 
interval t’, and that there are Af points in the interval 
to, so that Mt’ = to. 

The discontinuous function can be ,obtained from 
the continuous one by multiplying it by the appro- 
priate delta fun&ion. The transform is obtained from 
the corresponding folding procem in reciprocal para- 
metric space. The solution then follows very similar 
lines to those already outlined. 

It turns out that one arrives at the same equation 
for the Fourier transform as before, namely equation 
(2), but that the restriction now takes the form 

m,p+m,q+~s = m’M, (4) 
where m’ can take any integer value, positive or 
negative. Thus the continuous case may be considered 
ss a special case of the discontinuous case, obtainable 
by putting m’ = 0. 

The very symmetrical form of our answer shows 
that we sxe not restricted to three functions; we can 
easily add further functions, and the new answer can 
be written down from inspection. Thus we have a 
very general solution for any structure which can be 
expressed in parametric form. For a non-uniform wire 
we can aIways include an expression proportional to 
the weight of the wire at that point. 

Parametric equation of a continuous coiled-coil 
Let the major helix-i.e. the one with the larger 
repeat-be a right-handed helix defined by 

x = ‘b CO8 00 t , 
y=r,smw,t, 

1 
(5) 

z = P(o$/Sn) , 

where o. is positive. 
This is a helix of radius r, and a repeat distance of 

P in the z direction. The pitch angle, OL, is given by 
tan u = Sm,~P. 

Now imagine a new set of orthogonal axes x’, y’, z’ 
defined for a given value of t as follows: 

(a) The origin of the new frame is at the point 
(a, b, c) in the old frame, and satisfies equa- 
tion (5). 

(b) The z’ axis is tangential to the major helix. 
(c) The 2’ axis lies in a plane perpendicular to the 

z axis. 
Thus as t varies these new axes follow the major helix, 
the x’ axis always pointing directly away from the 
fibre axis, z. Consider a point (z’, y’, z’) in the new 
frame, What are its oo-ordinates in the old frame ? 

We obtain 
x--a,=x’cof300t-y’cosa.sinoot--a’sina.sinu@, 
y-b=z’sinw,t+y’cosor.coso,t+z’sinar.coso,t, 
z-c = -y’sin u +z’ CO8 u . 

Let us now make the point in the new frame rotate 
rapidly with t to trace out the minor helix, so that 

2’ = r, co9 w,t ) 
y’ = r1 sin w,t , 
2’ = 0. 
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If o1 is positive the minor helix is right-handed. If 
negative, left-handed. 

Thus we finally get for the equation of a coiled-coil 
in the original frame 

x= 
7ocos w,t + rl cos coot. cos o,t - 7, co8 0~. sin oat . sin oit , 

Y= 
7, sin w,t+r, sin o,t.cos o,t+r, co8 01.~08 o,t.sin wit , 

2 = P(o&/2~) -7, sin OL .sin o,t . 
Put 

ao that 
F,+Ll = 71, ?,--A = 71 co9 a, 

?I = r.(l+coa c.42, d = 7,(1-cos a)/2, 

and we easily obtain 

2 = 70 co9 w,t+r, cos [(Wo+wJt]+Ll CO8 [(w,--o,)t] ) 
y = 7. sin w,t+F, sin [(w,+w,)tJ+d sin [(coo-a+j, 
2 = P(a@/2n) -7, sin OL . sin o,t . 

We now neglect d, since for cases we are likely to 
consider it is very small. The theory can easily be 
extended to include it, and this has been done in the 
full result given later in equation (13). 

We shall now assume that while the major helix 
makes exactly N,, turns in the repeat distance c, the 
minor helix makes exactly N1 turns an its owrc co- 
ordinate frame. We shall also restrict ourselves to the 
case of a left-handed minor helix and a right-handed 
major helix, so that -ol/oO = N,/N,,. Thus our para- 
metric equation for the coiled-coil becomes 

x = 70 CO8 o,t+r, COB [(N,/N,-l)w,t] , 
y = 7, sin w,t-F, sin [(NJN,-l)w,t] , 

I 
(6) 

2 = P(c&2n)+r, sin a l3iIl [(N,/A’&&] . 
The structure repeats after a distance N,P in the Z 
direction. We have c = N$. 

The transform of the continuous coiled-coil 
We write, as usual, for the transform at the point 
(X, Y, 2) in reciprocal apace: 

C(X, Y, 2) = S’exp (2ni[zX+yY+zZ])&, (7) 
0 

since we need only integrate over the wire because the 
electron density elsewhere is zero. We now substitute 
from (6) into (7), and putting 

R2=xa+ye, tang= Y/X, 

we easily obtain 

s 

10 
cm yY, 2) - exp 2na {RP, co9 (mot-y) 

0 

+RFl cos [(NIlNo-l)o,t+y] 
+Zr, sin ez cos [(N,/N,)o,t-rc/2]+ZP(oot/2n))dt. (8) 

Notice that since the structure repeats after a distance 
c in the Z direction, the transform will be non-zero 
only when Z = l/c, where 1 is an integer. 

Equation (8) is in the general form we have discussed 
earlier, namely 

cm YBZ) = s l”fi(tlft(t)f3(t)f4(tw 9 
0 

where we define 
fi(t) = exp [2niRr, cos (o,t -y)] , 
f&t) E exp [ZniR?, cos ((N,/N,- l)o,t+y)] , 
fa(t) E exp [2nizr, sin bl. co8 {(NI/No)w,t--n/2)] , 
fa(t) = exp [2niZP(wot/2n)] . 

We obtain the corresponding transform of the first 
three of these by using the identity 

s 

2n 
exp (& co9 0) exp (inO)dt9 = 2nPJ,(ur) (9) 

0 

for integral n, where J,(w) is the Bessel function of 
order n. 

If f(t) can be written in the form 

f(t) = exp [iw ~0s (at+p)] , 

and if it repeats m times in the interval to, then from 
(1) and (9) we eventually obtain 

F(n.m/t,) = J,(w) exp (-in/?+inn/2), 

where n is an integer. Note that art0 = 2nm. 
This case covers fi,fi and f3. To obtain F,(T) we 

write 

FJT) = f 
s 
“exp (2niZP(w,@n)) exp (2nitT)dt. 

0 0 
This is zero except when the two exponentials cameI, 
i.e. when .ZP(w,/2n) = -T. Now N,P = c, the repeat 
distance of the structure. If we write Z = l/c (so that 
1 is the number of the layer-line), we obtain 

P,(T) = 1 when T = -l/to . 

Applying these results, and using the general for- 
mula of equations (2) and (3), we finally obtain 

C(R,y,l/c)=H~~J,(2nRro)J,(2nR~~)J,(2n(l/c)r,sinar) 
P!li 
x exp i~21(~/2+~)+4(n/2--y)+snl , (10) 

the sums to be taken over all integer values for which 

N,p+(N,-N,)q+N,s = E . (11) 
This has been normalized to make F,, unity. The 
solution is of course only non-zero on a set of planes 
corresponding to integer values of 1, since the structure 
is periodic in the z direction but non-periodic in the 
other directions. 

The discontinuous coiled-coil 
This is the case of a set of points placed at regular 
intervals on a coiled:coil, the scattering being due to 
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the points alone. We assume that one atom is at the 
point defined by t = 0, and that there are i%Z atoms, 
spaced at regular intervals of t, in the complete repeat 
distance, c. 

As already explained, the formula is identical with 
(lo), except that instead of (11) we now have the 
restriction 

N,,p+(Nl-N&+N,s = Z+Hm’ , (154 
where m’ can take any integer value. The continuous 
case is thus the discontinuous case with m’ restricted 
to zero. 

The above results apply to a right-handed major 
helix and a left-handed minor helix. The result for 
both helices being right-handed can be obtained simply 
by giving N, a negative value. The identity 

J-,(w) = J,(w) exp (inn) 

is useful in recasting the formula. 
The formula quoted assumes a rather special 

choice of the phase of both the major and minor 
helices. The general solution given at the end of this 
paper differs only in the exponential phase term, 
apart fzom the fact that we have assumed here that 
LI is negligible. 

The nature of the solution 
The solution looks more complicated than it is. This 
is because, as explained in the case of the simple helix 
(Co&ran, Crick & Vand, 1952), it is a property of Bes- 
sel functions that J,,(x) is vanishingly small for small x 
if n is large. Thus for the central regions of reciprocal 
space, where R is not too big, and for structures of a 
limited size, so that 7 is .also limited, (2x&) is often 
fairly small. Thus J+,(~&Y) vanishes for high values 
of n, and we usually only have to consider the low- 
order Bessel functions. 

The solution, then, says that the structure factor 
at the point in reciprocal space under consideration 
is given by the sum of an infinite numbers of terms, 
each of which is the product of three Bessel functions, 
multiplied by a phase factor. However, if one of the 
Bessel functions in any of the triple products is 
vanishingly small, that product also vanishes, so that 
the great majority of the triple products are effectively 
zero, and one usually only has to consider a very small 
number of them. 

The solutions quoted are for a sk~lf2. continuous 
coiled-coil, or a sin@e discontinuous set of atoms on a 
coiled-coil. As explained in the introduction, to obtain 
the structure factor for a number of sets of atoms one 
must calculate the structure factor for each set, and 
then add the structure factors together with due regard 
for phase. 

If we examine the general solution in the light of the 
solution for a simple helix (Co&ran, Crick & Vand, 
1952) we see that in a loose way we may think of the 
first Bessel term as due to the major helix, the second 

to the minor helix, and the third to the tilt produced 
on the minor helix by the major helix. Some of the 
important terms correspond to the rather obvious 
approximations that one would make if one did not 
have the full theory, and it is one of the advantages 
of the full theory that it enables one to see how far 
such approximations are justified. 

In order to bring out the nature of the solution, 
it is best to discuss a simple case in outline. This is 
done in a separate paper (Crick, 1963). For the cal- 
culation of structure factors the full formula is re- 
quired. This is given in the next section. 

The calculation of structure factors 
For this one requires the full solution. For a major 
helix given by 

x = 7, CO8 (u,t+pl,) , 
y = 7. sin (coot+yo) , 
z = P(w@n)+z, , 

and a minor helix given in its own rotating frame of 
reference by 

2’ = 7lCOS (o,t+yJ, 
;; 1 ‘d sin (%~+~I) 2 - , 

and with M atoms in the repeat distance c, one atom 
being at the point t = t,, we can show that if we put 
plr = 2dft,/to then the Fourier tra.nsform for this set 
of M atoms, normalized to make P,,600 unity, is 

WC y, Z/c) 
= ff+ + J,(2rrRr,)Jq(2nR~l)J,(2x(Z/c)71 sin a) 

x J,(2nRd)exp [ill(w-~,+n/2)+iq(-~+~~+n/2) 
+is(-y,+n)+id(y+yl+n/2)-dm’~~+2nilz,/c], (13) 

subject to the condition that 

N,p+(N,-No)q+Nls+(No+Nl)d = Z+Mm’ . (14) 
Here, as before, No is the number of turns of the right- 
handed major helix in the repeat distance c, and NI 
is the number of turns of the left-handed minor helix 
in ita own frame of reference in the same distance. 
Thus -wJo)~ = N,/N,. The parameters d and rI, 
are defined on page 687, and the pitch angle a on 
page 686. 

. 

The transform of the corresponding continuous hebx 
is obtained by taking m’ = Q)~ = 0. 

It may happen that we have available the atomic 
co-ordinates of the basic straight left-handed helix 
from which the coiled-coil is formed. If the coiled-coil 
deformation is small, we can use these co-ordinates to 
obtain the values of the parameters we require with 
sufficient accuracy for most purposes. 

Let us call the co-ordinates of the psrticular atom 
under consideration (7,, y,, z,), taking z, as small as 
possible. We shall imagine the frame of reference to 
which these co-ordinates refer to be moved in space 
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until it coincides with the position of our (x’, y’, z’) 
frame at t = 0, i.e. with its origin at (rc, qe, zc) in 
our basic frame and with its x axis perpendicular to 
our basic z axis and pointing directly away from it. 
It can be shown that we should put 

r1 =r,, 
tp&f = 27aM(z*/c) CO8 oc , 
VI = %+ {Wl -~,vf)%f * 

I should like to thank Mr G. Kreisel for a number of 
interesting discussions and in particular for suggesting 
the use of Parseval’s theorem at a crucial point. 

References 
COCJIRAN, W., CRICK, F.H.C. & VAND, V. (1952). Acta 

Cvyat. 5, 581. 
CRICK, F. H. C. (1952). Natum, Lmd. 170. 882. 
CRICK, F. H. C. (1953). Actu Cry&. 6, 689. 
PATJUNG, L. & COREY, R.B. (1953).Nnture, Land. 171, 

59. 
It should be remembered that (r,, qS, z,) shouId refer Pdmm~, L., COREY, R.B. & BRANSON, H.R. (1961). 
to a left-handed helix in a right-handed frame. Prm. Nat. Acad. Sci., Wmh. 37, 205. 

AC6 44 


